本站不再支持您的浏览器,360、sogou等浏览器请切换到极速模式,或升级您的浏览器到 更高版本!以获得更好的观看效果。关闭

Contaminant Transport Dynamics in Porous Media

课程编号:70050082

课程名称:多孔介质污染物迁移动力学Contaminant Transport Dynamics in Porous Media

课程学时:32

课程学分:2

授课语言:中文

课程简介:“多孔介质污染物迁移动力学”是研究流体和污染物在多孔介质中运动与转化规律的科学。它是环境科学、水文地质学和工程地质学、土力学和土壤水力学等学科的重要理论基础,在环境污染防治、水利工程、地下水资源开发和管理、区域环境管理等方面得到了广泛应用。本课程讨论污染物在多孔介质中迁移转化规律和动力学,包括污染物运移的理论基础、在不同介质中的迁移转化规律、迁移转化方程和数学模型、不同条件下问题的解析解及其应用、复杂问题的数值解、参数确定方法以及学科进展等。教学目标:通过课程学习,学生可以掌握污染物的迁移转化规律、方程/公式和应用条件并进行应用计算;掌握广为应用的求解污染物迁移转化问题的有限单元和有限差分数值方法;掌握从基本环境条件概化到建立数学模型、到模型求解、再到解的应用分析这样一套解决实际问题的完整方法。不仅可以掌握污染物迁移动力学扎实的理论基础,而且具备针对实际问题进行分析计算的能力。


"Contaminant Transport Dynamics in Porous Media" is the science of studying the movement and transformation of fluids and pollutants in porous media. It is an important theoretical basis for environmental science, hydrogeology and engineering geology, geotechnics and soil hydraulics, and is widely used in environmental pollution prevention and control, water conservancy engineering, groundwater resources development and management, and regional environmental management. Main contents will be as follows: the theoretical basis of contaminant transport and transformation patterns in different media, transport and transformation equations and mathematical models, analytical solutions to problems under different conditions and their applications, numerical solutions to complex problems, methods of parameter determination, and advances in the discipline.

Through the course, students are expected to master the transport and transformation patterns, equations/formulas and application conditions of pollutants and perform application calculations; the widely used finite unit and finite difference numerical methods for solving transport and transformation problems of pollutants; a complete set of methods for solving practical problems from the generalization of basic environmental conditions to the establishment of mathematical models, to model solutions, and then to the application analysis of solutions. This course provides a solid theoretical foundation in pollutant transport dynamics and the ability to perform analytical calculations for practical problems.